Extra Long-rang Daily Forecast

          Calculate of Meteorological Calendar

 

                                Zhang Shichao

                   Meteorological Bureau of Shaanxi province

                                    CHINA

 

 

     Numerical  weather  forecast  has been advance greatly by  application  of computer,  but  it only limits for forecast of short-range  weather  situation, because  the  meteorological  factors (such as precipitation)  were  forecasted according  to weather situation,  the forecast accuracy is little   lower.  For weather forecast of long-range above 15-day,  it perhaps may be said:  there is not a method that is  recognized generally and reliable,  the forecast accuracy is lower and lower.  For instance, the forecast accuracy  which the predict for temperature  and rainfall of next month is higher or lower,  less or more  than historical average is 67٪ and 52٪ in USA, 58٪ and 54٪ in Soviet Union, 66٪and 58٪ in Japan respectively.  There is not make daily forecast for exceed toa month except Japan in the world. At 1970's,there is existed a method of extra long-range daily forecast in China.  It is called meteorological calendar, that it lists some dates of enable rainfall. It was said the meteorological calendar is welcome,  but it disapeares now. I think that the reason is it's accuracy to be  the  lowest and make it to be difficulty.  I have developed a  software  of computer,  it  only  uses  records of some meteorological factors of  a  single observation  station  and  may make up daily  forecast  of  the  meteorological factors in next 15 months.  This method has a lot of  steady accuracies and can use not only daily rainfall and  temperature forecast,  but also daily hail and seism forecast.

     My major is not meteorology. I have begun to study meteorological forecast since  1968.  Since 1976 I have made meteorological calendar by the abacus  and the slide rule, wroten a paper (its title is¡¡ãEssential Periodical Analysis¡¡À). There are many methods of periodical analysis in statistical forecast,  I think that   a  method  of harmonious analysis is more scientific,  but it  has  more defects to apply on the time series which has infinite length, such as the data length to be not  longer,  the numbers of period to be not  more than four  and five.  My  method overcomes above defects at certainly degree.  There are  many things    that  layman  is  no fetter and makes a  breakthrough  in  scientific history.  Do I find a new way?  Although the model has many layers, the initial field is closer  and the step is shorter,  the  numerical weather forecast  can not forecast longer. This means controlling atmosphere move should need to find other  new  ideas.   Therefore  the  research   should  carry  out  from  other directions,  study  the  periodicity and discover periods.  Atmosphere  may  be considered  a  super  system  (black  box) that  involves  all  of  influential factories.  If  there  is  any law in such a system  (especially  in  the  time series),  it is only periodicity. Virtually, metre, relation and similarity has all belong to periodicity.  The astronomy is first to discover some periods and may  predict solar and lunar eclipse,  then to form the theory of solar system, and final to appear Newton's mechanism. In beginning, the physics sense was not  pursued.

     The  appraisal  method  for extra long-range daily  forecast  of  mine  is described  below.  (1).The  SMALLEST  ERROR  be called that is  a  mean  square deviation  of the smallest difference which is between real daily rainfall  and predict  values  of  before and after a  day (total 3  days),  and  is  between predict values and real rainfall of before and after  a day (total 3 days). The smallest  error  is  compared  with standard deviation  (S.D.)  of  real  daily rainfall series.  (2).The SLIDE ERROR be called that is a mean square deviation of  difference  which is between slide values in 3 days of  real  rainfall  and predict value at same day. Slide error is compared with standard deviation  (S.D.) of slide real  rainfall  series.  If all of predict values equal averages of real  daily rainfall  in  corresponding months,   the errors  equal  to  corresponding  the standard deviation.  Because the averages do not know, it is obliged to use the history  averages  of special months.  As a result,  the errors is bigger  than corresponding the standard deviation.

     For  rainfall series,  I still compute two accuracies.    (1).ACCURACY  OF RAIN  DAY:  there is a real rainfall amount at least in before and after a  day (total  3 days) if predict value bigger than 0.0,  and there is a predict value is  bigger than 0.0 at least in before and after three predict values  if  real daily rainfall is bigger than 0.0,  otherwise it is inaccurate. (2).ACCURACY OF FINE OR RAIN:  the appraisal method  is similar to above,  and addes that there is  a day not rainfall amount at least in before and after a day (total 3 days) if a predict value equals 0.0,  and there is a 0.0 at least in before and after a day (total 3 days) of predict series if a real daily rainfall doesn't  bigger than  0.0,  otherwise  it is inaccurate.  Because the probability (R) of  daily rainfall  is bigger than 0.0 and smaller than 0.5 (at Xian R=0.325) in  general region,  the predict of daily rainfall by climatic probability  always equal to 0.0.  According to above, the accuracy of rain day equals to 0.0,  the accuracy of fine or rain is little bigger than (1 - R),  and not more than (1 - R/2). If a predict daily rainfall always equals to the history average precipitation,  the accuracy of rain day is little bigger than [2R/(1 + R)] and not more than [4R/(1 + R)], the accuracy of fine or rain is little bigger than R and not more than  2R.

     When I compute two kinds of the accuracy,  the forecast time may before or after  stride  a day in time.  This is serious for extra  long-range  forecast, because  the short-range forecast  may after stride 12 hours.  Because forecast can after or before stride a day, if predict always a rain day by a fine  day,  it's accurate  seems to equal to 100٪ in any case of rain or fine. In fact, this is true if the appraise is only for real rainfall series.  Thus above methods  must appraisal for predict series too.  As long as there is a subseries of three days of sustained rain or of sustained fine in real rainfall series, a error will be appear.  The  result  of  my  forecasting is obtained by  accumulate  for  more hundreds of periods, it can predict of sustained rain or of sustained fine, has both  sum  of rainfall and numbers of rain day conformed to real and  can't  be speculate. So  this method of appraise is stringent and rational.

     For  daily  mean temperature series,  similar to daily  rain  series,  two forecast  accuracies are computed:  (1).ACCURACY OF DETEMPERATURE:  if  a  real daily average of temperature is lower than preceding exceed to 1˚C,  then there is  a day's predict value in before and after a day in predict series is  lower than  preceding  exceed  to   1˚C ;   if a day's predict value  is  lower  than preceding  exceed to 1˚C ,  then there is  a day's daily temperature in  before and after a day of real series is lower than preceding exceed to 1˚C,  otherwise is inaccurate.  It  is  neglected  that  the detemperature  is  less  than  1˚C  . (2).ACCURACY OF RAISING TEMPERATURE:  The method of appraisal is same above, as long  as   raising temperature instead of detemperature.  If above two  errors (slide err. And the smallest err.) were pursued to be smaller and the  accuracy were not used,  the history data  would be   longer and the numbers of selected period were not need more,  this  time, the   curve of predict is smoother and the predict don't include fluctuation of daily temperature with cold air.

     The rainfall forecast have been taken 14 times with my method,   the  each predict  encloses daily rainfall of 450 days (15 months),  the appraised result with above showed bellow table 1:

 

                                   Table 1

        ©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤

                                    average    the highest   the lowest

             slid   S.D.              2.90         3.8         2.0

             slide  err.              3.25         4.0         2.5

            series  S.D.              4.90         6.4         3.4

          the smallest err.          3.31         4.0         2.6

         accuracy of rain day      64.38        70.6        58.9

         accuracy of fine or rain  83.97        88.0        81.1               

        ©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤

 

The  forecasts  are obtained by accumulating and inferencing of the  150  - 160 periods  which were gotten by  analysis of 15000 days (about 41 years) data  in  before  forecast  day.  All of accuracies are  true  and  not  fitting.  Please attention,  the differences of the highest and of the lowest among 14 times are about 10٪.  In other words,  the forecast effects are stable.  Particular, two standard  deviation(S.D.) have bigger fluctuation (the difference of the highest  and of the lowest is 1.8 and 3.0 respectively),  but two predict errors are smaller (1.5 and 1.4 respectively).

     Good  forecast  of  daily  temperature  may be  obtained  by  using  short preceding  data  (1500 days) and selectting few periods  (90).  The  result  of appraise for 12 times forecasts has a same  stable. The two predict errors are smaller than daily  rainfall forecast and both have same characteristic, the smallest error is lower than  standard  deviation  and  the slide error is little   bigger  than  slide standard deviation.  All of results showed below table 2.

 

                                  Table 2

        ©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤

                                      average   the highest  the lowest

               slide  S.D.              2.39         2.6         2.1

               slide  err.              3.08         3.4         2.7

              series   S.D.             3.50         3.8         3.1

            the smallest err.          2.50         2.7         2.2

         accuracy of detemperature   66.45        74.3        60.5

         accuracy of raising tem.    71.59        77.6        68.4

        ©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤

 

     The  results of above two accuracies are appraised for all 15 months.  For examinning  the period of validity,  I have studied the accuracy variation   as inference to be farther and appraised according to the forecast of each  month. I  have  the distance  of two forecasts been not exact one year,  but been  300 days,   the months of fewer and more rainfall been staggered,  the statistician of monthly accuracy been not the season influence,  The table 3 showed that the forecast  accuracy is not dropping.  Except the accuracy of fine or  rain,  the other monthly  statistic  value  don¡¯t include the  smaller.

 

                                   Table 3

        ©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤

                    month               1     2     3     4     5     6 

           accuracy of rain  day      56.7  62.1  45.9  62.7  58.0  60.1

           accuracy of fine or rain   81.2  86.6  81.4  88.0  81.6  83.2

           accuracy of detemperature  65.7  67.9  55.0  63.8  71.2  74.9

           accuracy of raising  tem.  72.9  70.1  72.3  66.9  68.7  69.2

        ©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤

 

                  ©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤

                      7     8     9    10    11    12    13    14    15 

                    64.1  61.0  57.7  51.9  55.6  63.7  54.6  57.9  53.3

                    87.2  83.7  84.2  85.5  79.1  86.2  83.3  86.9  81.8

                    71.3  63.4  61.2  65.4  58.2  69.0  66.6  58.6  64.8

                    69.6  71.4  67.2  70.3  65.1  74.0  68.9  63.3  70.1

                  ©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤©¤